Design, Preparation, and Study of Catalytic Gated Baskets

Bao-Yu Wang, Teodora Žujović, Daniel A. Turner, Christopher M. Hadad, and Jovica D. Badjić*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States

Supporting Information

ABSTRACT: We report a diastereoselective synthetic method to obtain a family of catalytic molecular baskets containing a spacious cavity (~570 Å³). These supramolecular catalysts were envisioned, via the process of gating, to control the access of substrates to the embedded catalytic center and thereby modulate the outcome of chemical reactions. In particular, gated basket 1 comprises a porphyrin "floor" fused to four phthalimide "side walls" each carrying a revolving aromatic "gate". With the assistance of ¹H NMR and UV–vis spectroscopy, we demonstrated that the small 1-methylimidazole guest (**12**, 94 Å³) would coordinate to the interior while the larger 1,5-diadamantylimidazole guest (**14**, 361 Å³) is relegated to the exterior of basket Zn(II)–1. Subsequently, we

examined the epoxidation of differently sized and shaped alkenes 18-21 with catalytic baskets $12_{in}-Mn(III)-1$ and $14_{out}-Mn(III)-1$ in the presence of the sacrificial oxidant iodosylarene. The epoxidation of *cis*-stilbene occurred in the cavity of $14_{out}-Mn(III)-1$ and at the outer face of $12_{in}-Mn(III)-1$ with the stereoselectivity of the two transformations being somewhat different. Importantly, catalytic basket $14_{out}-Mn(III)-1$ was capable of kinetically resolving an equimolar mixture of *cis*-2-octene **20** and *cis*-cyclooctene **21** via promotion of the transformation in its cavity.

■ INTRODUCTION

Ever since Cram's seminal paper¹ about the prospect of molecular encapsulation, many covalent²⁻⁴ and self-assembled^{5,6} capsules have been made⁷ and demonstrated to entrap smaller compounds having complementary size, shape, and functionality. Indeed, the isolation of a guest in the interior of a host provides the entrapped compound with a unique environment sometimes referred to as "a new state of matter". By way of encapsulation, one can thus modulate the persistence of reactive intermediates^{9,10} and even change the course/rate of chemical reactions¹¹⁻¹³ or conformational changes.¹⁴ The mechanism by which the entrapment occurs¹⁵ is typically a function of the host's structure, and in accord with one of the following mechanistic scenarios: slippage, dissociation, or gating.¹⁵ In particular, gating^{15,16} comprises a conformational change in the host that regulates the rate (e.g., the constrictive binding energy ΔG^{\ddagger})¹⁷ by which guests enter or depart the host. Enzymes use gating for controlling the selectivity of catalytic reactions,¹⁸ while ion/molecular channels employ gating for regulating the trafficking of ions across cell membranes.¹⁹ This study poses a question about the relationship between the gating of reactants and its effect on the outcome of a chemical reaction occurring inside a gated catalyst. In particular, we would like to understand if modulating (1) the residence time of encapsulated reactant(s) and/or (2) its access to such a gated catalyst^{20,21} has any effect on the reaction's yield, stereoselectivity, and/or product distribution.

 We^{22-26} and others²⁷⁻³² have, during the past decade, explored gated hosts and their mechanisms of operation. Importantly, there have been no studies about gated catalysis,

but investigations on the effect of the catalyst's dynamics on the reaction's outcome are emerging.^{33–36} Accordingly, the present work focuses on the design, synthesis, and optimization of the catalytic behavior of a new family of gated baskets (Figure 1). These compounds comprise a porphyrin "floor" surrounded with four phthalimide-based "walls" for forming a semirigid platform (Figure 1A).³⁷ The aromatic "gates" are placed at the top of the platform to, via CH₂ "hinge" groups, revolve about the basket's entrance/exit and thereby regulate the access of guests to the catalytic center (Mn(III)) embedded in the cavity (Figure 1A).

On the basis of our previous study,³⁹ we first developed a reliable synthetic method for the preparation of catalytic molecular baskets (Figure 1). Next, we used ¹H NMR and UV–vis spectroscopic methods for quantifying the axial coordination of differently sized imidazoles to zinc(II)- and manganese(III)-metalated baskets. Finally, we examined the epoxidation of alkenes^{40–44} inside and outside the cavity (~570 Å ³, Figure 1B) of Mn(III)-containing baskets. In particular, the oxygen atom transfer (OAT) reaction was promoted with monomeric and soluble iodosylarene (*t*-BuSO₂PhIO).^{45,46} Consistent with prior work,^{47–49} this sacrificial terminal oxidant converted the resting state Mn(III) supramolecular catalyst into an elusive Mn(V)=O species that further transferred the results of our catalytic studies suggest that gated baskets are capable of promoting the epoxidation of differently sized-alkenes in their

Received: December 6, 2011 Published: February 3, 2012

Figure 1. (A) Catalytic gated baskets comprise a porphyrin "floor", phthalimide "walls", and aromatic "gates". (B) Inner volume of the catalytic basket, with four gates pointing toward the cavity, was estimated to be 570 Å³;³⁸ note that the right-hand illustration represents a computed van der Waals surface of the basket with the front side omitted for clarity.

interior. The stereoselectivity and rates of these reactions appear to be a function of the size/shape of various alkene substrates.

RESULTS AND DISCUSSION

Synthetic Hypotheses. We recently developed a diastereoselective synthetic method for obtaining cup-shaped porphyrins akin to gated molecular basket in Figure 1.³⁹ In particular, we showed that *enantiopure* pyrromethanecarbinol, akin to **10** (Scheme 1), would undergo a stereoselective oligomerization in the presence of a Brönsted acid, such as *p*-TsOH, to give a sole porphyrin product with four bicyclic rings pointing to the same direction in space (Scheme 2). The acidcatalyzed condensation was under kinetic control as longer reaction times and higher concentrations of the acid led to the formation of other diastereomeric porphyrins.³⁹ In accord with such findings, the synthetic strategy for obtaining gated basket 1 (Scheme 2) was based on the notion that compound 10 would undergo a diastereoselective head-to-tail tetramerization and, upon oxidation, give rise to porphyrin derivative 11 (Scheme 2). In addition, we surmised that octaester 11 could easily be transformed into gated basket 1 using a previously described methodology.⁵⁰

Synthesis. Benzonorbornadiene derivative 2 was made in multigram quantities following a published procedure.⁵¹ The epoxidation of 2 with *m*-CPBA occurred with exclusive transfer of the oxygen atom to the *exo* side of the norbornene; 2D-NMR NOESY investigation⁵² of epoxide 3 revealed ¹H–¹H correlations implying the *exo* position of the epoxide functionality. Compound 3 was further subjected to ringopening with thiophenol in the presence of Lewis acid $(CH_3)_3AI^{53}$ (Scheme 1). Interestingly, in this reaction the nucleophile attacked both the *exo* and *endo* sides of 3 to give 4;

Scheme 2. Diastereoselective Oligomerization of 10 (5.0 mM) Completed in $CHCl_3$ with *p*-TsOH (0.395 mM) at Room Temperature^{*a*}

^aFor the chemical structure of 1, see Figure 2A.

note that 4 was obtained as a mixture of two diastereomers 4a_{rac} and 4b_{rac}. Complete oxidation of the sulfide functional group in 4 was accomplished with *m*-CPBA to give sulfones $5a_{rac}/5b_{rac}$ (Scheme 1). Diastereomeric $5a_{rac}/5b_{rac}$ were subsequently separated by silica column chromatography, and their ratio was roughly 32:68. To continue the synthesis, we used the more abundant $5b_{rac}$ diastereomer as compound $5a_{rac}$ would not give the desired products. In an attempt to resolve racemic $\mathbf{5b}_{rac}$, we employed (1*S*,4*R*)-camphanic chloride.⁵⁴ Upon esterification of $5a_{rac}$ two diastereomeric esters 6a/bwere separated by column chromatography (hexanes/EtOAc = 2:1) and then each independently reacted with sodium methoxide in order to remove the chiral auxiliary (Scheme 1); note that compounds 7 and now enantiopure 5b were, from 6a, obtained in a 1:9 ratio. Upon mesylation of enantiopure 5b and then elimination of the mesyl group with non-nucleophilic DBU, we were able to isolate 8; the enantiopurity of this compound was checked with chiral HPLC and found to have an ee > 99% (Figure S10, Supporting Information).⁵² The treatment of compound 8 with tert-butyl isocyanoacetate, in the presence of t-BuOK (the Barton-Zard reaction), led to the formation of pyrrole derivative 9. Hydrolysis of the tert-butyl ester functional group in 9 was optimized (70%) to give the corresponding carboxylic acid product; note that "deprotection" with trifluoroacetic acid (TFA) would give lower amounts $(\sim 40\%)$ of the desired acid with competing decarboxylation product. The esterification of the product with coupling reagent PvBOP (benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate) followed by NaBH₄ reduction gave pyrromethanecarbinol 10 (Scheme 1).

We used 0.395 mM *p*-TsOH in CHCl₃ for promoting the oligomerization of pyrromethanecarbinol **10** (5.0 mM, Scheme 2). The reaction allowed almost the exclusive formation of desired porphyrinogen that, upon oxidation with DDQ, gave octaester **11**. The cup-shaped octaester was isolated by column chromatography (dichloromethane/methanol = 50:1) and then converted into gated basket **1** (Scheme 2).

Spectroscopic and Conformational Characteristics of Gated Baskets. We incorporated metal cations, Zn(II) and Mn(III), into gated basket 1 to form Zn(II)–1 and Mn(III)–1 (Figure 2A) and then completed the characterization of these compounds. The ¹H NMR spectrum of gated basket 1 (400 MHz, CDCl₃) showed of a set of resonances corresponding to a $C_{4\nu}$ symmetric species (Figure 2B). On the basis of our prior study,³⁹ we reasoned that the shuttling of the N–H protons

Figure 2. (A) Chemical structure of gated basket 1, Zn(II)-1, and Mn(III)-1. (B) ¹H NMR spectrum (400 MHz, CD_2Cl_2) of basket Zn(II)-1 at 298.0 K. (C) UV-vis spectra of gated basket 1 (0.005 mM, solid line), Zn(II)-1 (0.003 mM, dashed line), and Mn(III)-1 (0.004 mM, dotted line) in CH_2Cl_2 at 298 K.

was, at room temperature, fast enough for averaging the proton resonances. Indeed, variable-temperature (VT) ¹H NMR study of 1 revealed decoalescence of all signals at ~228 K (Figure S40, Supporting Information),⁵² corresponding to the expected change in the symmetry from $C_{4\nu}$ to $C_{2\nu}$ and the decelerated N–H shuttling. Moreover, the revolving of four benzene gates at the basket's entrance/exit must be accompanied with a small activation barrier, since the VT ¹H NMR measurement did not show any additional change up to 194.2 K (Figure S40, Supporting Information).⁵²

The porphyrin macrocycle has characteristics of an aromatic compound yet is flexible enough to adopt various nonplanar conformations.55 The position of the Soret and Q bands in the electronic (UV-vis) spectrum of porphyrins is, in fact, indicative of the planarity of the ring: one typically identifies red shifts of the absorption bands originating from nonplanar deformations in the macrocycle.⁵⁶ The UV- vis spectra of free base 1, Zn(II)-1, and Mn(III)-1 baskets are shown in Figure 2C. Importantly, the λ_{max} bands of 1 and Zn(II)-1 are positioned at 645 and 572 nm (Figure 2C) and close to those measured for recently prepared free-base and Zn(II)metalated bicyclic porphyrins ($\lambda_{max} = 665$ and 551 nm);⁵⁷ these porphyrins were "equipped" with bicyclo[2.2.2]octene framework for increasing the system's rigidity and stabilizing the planar conformation in solution.57 Moreover, the absorption bands in 1 and Zn(II)-1 are blue-shifted with respect to the λ_{max} of nonplanar octaethylporphyrins (for freebase and Zn(II)–OEP, $\lambda_{max} = 686$ and 637 nm).^{57,58} Another diagnostic feature of the distortion of the porphyrin macrocycle is the ¹H NMR chemical shift of the N-H resonance appearing at a lower field than typically observed ($\delta = -2$ to -5 ppm). The chemical shift for the N-H protons in basket 1 were found at -4.97 ppm,⁵² which in line with UV-vis measurements suggest that the base of our basket is indeed adopting a planar conformation in solution. The absorption spectrum of Mn(III)-1 reveals two Soret bands at 374 and 470 nm (Figure 2C) and Q-band at 565 nm (Figure 2C). Importantly, the measured transitions are in the range of those reported for numerous Mn(III) porphyrins48 further validating the incorporation of Mn(III) into basket 1.

¹H NMR Study of the Coordination of Imidazole-Based Ligands 12–14 to Zn(II)–1. For promoting chemical reactions (epoxidation)⁶⁰ in the interior of gated baskets we decided to first investigate the axial coordination of imidazolebased ligands to Zn(II)–1 and Mn(III)–1 (Figure 3). The rationale for such studies rested in the notion that the coordination of *N*-heterocycles to the outer side of Mn(III)–1 would enforce the chemical transformation to occur in the cavity of the basket.^{61,62}

The cavity of gated basket 1 is sizable, and we used molecular mechanics (MM2) to estimate the volume of its inner space to be ~570 Å³ (Figure 1B).³⁸ On the basis of their different size and shape, three imidazoles 12–14 (94–361 Å³, Figure 3B) were anticipated to coordinate to inner and/or outer sides of Zn(II)–1 (Figure 3A). We used ¹H NMR spectroscopy to study the regioselectivity of the axial coordination: zinc(II) is in porphyrin systems diamagnetic (d¹⁰ electronic state) and prone to form ML_5 square-pyramidal complexes suitable for ¹H NMR studies.^{63,64} The working hypothesis was based on our earlier work:³⁹ if the coordination of 12–14 to Zn(II)–1 occurs on a particular side of the basket, *the magnetic environment of the nearby proton is perturbed to a greater extent* (Figure 3). For instance, a greater change in the chemical shift of the signal

Figure 3. (A) Axial coordination of ligands $12-14^{52}$ could occur inside or outside of Zn(II)-1, and VT ¹H NMR spectroscopy was used to quantify the equilibrium ($K_{in/out}$). (B) Chemical structures of energy minimized 12-14 (AM1, Spartan) and their corresponding volumes.

corresponding to outer H_b protons (Figure 3A) should be diagnostic for the coordination occurring on the basket's outer side; in principle, measuring host-guest NOEs could give information about the position of the guest though we were unable to assign the guest's ¹H NMR signals due to an extensive broadening and/or rapid exchange of its resonances. Accordingly, we titrated 12-14 (~13 mM) to Zn(II)-1 (0.15 mM) in CD₂Cl₂ and recorded ¹H NMR spectrum (400 MHz, 298.0 K) upon each addition of the ligand (Figures S11-S19, Supporting Information).⁵² Then, we plotted the relative change in the chemical shift ($\Delta\delta$, ppm) of protons H_b (located on the basket's outer side, Figure 3A) and H_e (located on the basket's inner side, Figure 3A) as a function of the molar equivalents of 12-14 (Figure 4). Evidently, the binding of smaller 1-methylimidazole 12 to Zn(II)-1 caused a greater perturbation of the magnetic environment of the inner He protons ($\Delta \delta = 0.04$ ppm, Figure 4A).

The coordination of more sizable 14 to Zn(II)-1, however, caused a more considerable perturbation of the outer H_{b} protons ($\Delta \delta = 0.06$ ppm, Figure 4C). Despite rather small perturbations ($\Delta \delta < 0.1$), there still exists a trend in the relative change of the chemical shifts ($\Delta \delta$, Figure 4) of H_{e} and H_{b} : the more sizable the ligand the greater the ¹H NMR chemical shift of the outer protons and vice versa! A useful way to visualize the trend is to view the blue and red curves in Figure 4 from left to right. It subsequently follows that at 298.0 K smaller 12 (94 Å³) prefers coordinating to the inner while bigger 14 (361 Å³) to the outer side side of Zn(II)-1 (Figure 5).

For quantifying the observed in/out stereoisomerism, we used variable-temperature ¹H NMR spectroscopy (Table 1). The chemical exchange of ligands **12–14** to and from Zn(II)–**1** was, at low temperatures, expected to slow down with a decoalescence of proton resonances corresponding to the formation of in/out stereoisomers (Figure 3A). Indeed, variable-temperature ¹H NMR measurements (400 MHz, CD_2Cl_2) of **13–**Zn(II)–**1** and **14–**Zn(II)–**1** (~190–220 K) showed two sets of resonances with the integration ratio being a function of the external temperature (Figures S22–S25, Supporting Information).⁵² The integration of the signal

Figure 4. Relative ¹H NMR (400 MHz, 298.0 K) chemical shifts ($\Delta\delta$, ppm) of H_e/H_b protons in Zn(II)-1 measured upon incremental addition of variously sized ligands 12–14 to its CD₂Cl₂ solution.⁵².

Figure 5. Chemical structures of energy-minimized (AM1, Spartan) 14_{out} -Zn(II)-1 (A) and 12_{in} -Zn(II)-1.

Table 1. Thermodynamic Parameters for Stereoisomeric In/ Out Equilibration ($K_{in/out} = [out]/[in]$) of Complexes (13/ 14)-Zn(II)-1 Generated from VT ¹H NMR Measurements and van't Hoff Analysis^{*a*}

ligand	$K_{\rm in/out}^{d}$	$\Delta H^\circ_{ m in/out} \ (m kcal/mol)$	$T\Delta S^{\circ}_{ m in/out}{}^{d}$ (kcal/mol)	% In ^d	$\operatorname{Out}^{\%}$
12^b				~100	0
13	0.99	0.55 ± 0.03	0.54 ± 0.03	50	50
14 ^c	6.5	1.44 ± 0.09	2.55 ± 0.20	~ 10	~90

^{*a*}Figure S26 (Supporting Information), $R^2 = 0.98$ for 13 and $R^2 = 0.97$ for 14).⁵¹. ^{*b*}VT ¹H NMR showed no decoalescence of resonances. ^{*c*}The estimated percentage of *in* and *out* stereoisomers changes to 0:100 if one plots % (out) as a function of temperature (linear dependence, $R^2 = 0.99$). ^{*d*}At 298.0 K.

corresponding to H_e protons (with the ligand coordinated on the inner $\delta_{in} = 7.97$ ppm and the outer side $\delta_{out} = 8.03$ ppm)⁵² in both 13–Zn(II)–1 and 14–Zn(II)–1 allowed us to evaluate the proportion of in/out stereoisomers and create the corresponding van't Hoff plots (Figure S26, Supporting Information, Table 1).⁵²

Markedly, 1,5-dicyclohexylimidazole 13 would at 298.0 K coordinate to both inner and outer sides of Zn(II)-1, while the larger 1,5-diadamantylimidazole 14 would preferentially reside at the outer side of Zn(II)-1 (Table 1). A set of ¹H NMR resonances (298.0 K) corresponding to the coordination complex 12-Zn(II)-1 was unaltered at all temperatures (for

 $H_{e'}$, δ_{in} = 7.95 ppm; see Figure S21, Supporting Information), indicating the exclusive formation of 12_{in} -Zn(II)-1 (Table 1).

Apparently, there is an enthalpic $\Delta H^{\circ}_{in/out}$ but not entropic $\Delta S^{\circ}_{in/out}$ advantage (see Table 1) for ligands 13 and 14 coordinating to the inner side of Zn(II)-1. The situation is different from previously examined cup-shaped baskets³⁹ whereby the entropically favorable desolvation of ligands would allegedly drive their coordination to the inner side. We surmise that in the case of Zn(II)-1, the extended phthalimide "side walls" as well as the revolving gates (absent in cup-shaped baskets) interact with the entrapped guest, thereby affecting the enthalpy/entropy balance in the binding.

Preliminary computational study of the in/out stereoisomerism (DFT, RI-BP86/SV(P), TZVP)^{52,65-68} furthermore revealed a somewhat greater affinity of 12 ($\Delta E_{out/in} = -3.60$ kcal/mol) over 13 ($\Delta E_{out/in} = -2.61$ kcal/mol) or 14 ($\Delta E_{out/in} = -1.91$ kcal/mol) for residing in the interior of Mn(III)-1. The origin of the trend for the computed energy difference (ΔE) rests in the van der Waals strain increasing in the series 12_{in} -Mn(III)-1 < 13_{in} -Mn(III)-1 < 14_{in} -Mn(III)-1: the distance between the two opposite phthalimide "side walls" is in ligand_{in}-Mn(III)-1 increasing with more sizable ligands⁵¹ therefore indicating adverse steric interactions. In fact, one needs to take the solvation as well as dynamics of the host/ guest pair into an account to obtain more information on the binding thermodynamics.

Quantitative Study of the Coordination of 12/14 to Metalloporhyrins. With a good understanding of the in/out stereoisomerism, we used UV-vis spectroscopy for quantifying the binding affinity of 12 and 14 toward Zn(II)-1 and Mn(III)-1 as well as metalloporphyrins 15-17 (Figure 6). Since 1,5-dicyclohexylimidazole 13 would, at room temperature, coordinate to both inner and outer sides of Zn(II)-1, we refrained from quantifying the axial binding of this particular compound. The modes of the complexation of Zn(II) and Mn(III) porphyrins with N-heterocycles, forming five- and sixcoordinate species (Figure 6A), are described in the literature $^{63,69-73}$ and as such used in our analysis. The coordination of 12 and 14 to Zn(II)-1 (CH₂Cl₂, 298.0 K) affected both the Soret and Q absorption bands of the porphyrin chromophore (Figure 6B); note that the red (10–15 nm) shift of the Soret band is typically observed for Nheterocycles binding to Zn(II) porphyrins.^{74,75} The appearance (**A**)

0.

350

400

500

550

Article

Figure 6. (A) Two modes of binding of imidazole-based ligands (L) to Zn(II) and Mn(III) porphyrins^{63,69–73} (top) and chemical structure of **15– 17** (bottom).⁵² (B) UV–vis spectra of Zn(II)–**1** (0.0026 mM, CH₂Cl₂) recorded upon an incremental addition of a solution of **14** (up to 1000 molar equiv) at 298.0 K. (C) UV–vis spectra of Mn(III)–**1** (0.029 mM, CH₂Cl₂) recorded upon an incremental addition of a solution of **14** (up to 1000 molar equiv) at 298.0 K.

M = Mn(III)CI

17

Table 2. Thermodynamic Stability Constants (K_{a1} and K_{a2} at 298.0 K) Characterizing 12 and 14 Complexation to Zn(II) and Mn(III) Porphyrins Obtained by Multivariate Factor Analysis of the UV–vis Titration Data⁵²

	1-methylimidazole (12)		1,5-diadamantylimidazole (14)	
porphyrin	K_{a1} (M ⁻¹)	$K_{a2} (M^{-1})$	$K_{a1} (M^{-1})$	$K_{a2} (M^{-1})$
15 ^{<i>a</i>}	$4.0 \pm 0.2 \times 10^3$		$5.1 \pm 0.3 \times 10^3$	
16 ^{<i>a</i>}	$1.78 \pm 0.04 \times 10^4$		$3.7 \pm 0.1 \times 10^4$	
Zn(II)-1	$4.46 \pm 0.09 \times 10^4$		$1.91 \pm 0.07 \times 10^5$	
17	58 ± 12	45 ± 22	68 ± 18	<10
Mn(III)-1	58 ± 13	<5	332 ± 26	0^b
<i>a</i>			79 70 1	

"For a direct comparison of these data, we applied statistical correction $K_{a1} = 1/2 K_{(experimental)}$." The coordination of the second ligand was not observed.

of isosbestic points is, in our experiments (Figure 6B), indicative of 14 (but also 12, Figure S33, Supporting Information)⁵² exclusively coordinating to one side of Zn-(II)-1 (at 298.0 K). The UV-vis titration data were subjected to multivariate factor analysis (Figures S27-S36, Supporting Information, ReactLab EQUILIBRIA software)⁵² for obtaining equilibrium constant K_{a1} (Table 2).^{76,77} Interestingly, the affinity of 12/14 toward Zn(II)-1 is somewhat greater than toward "flat" porphyrins 15 and 16 (Table 2). Furthermore, 1,5-diadamantylimidazole 14 has a greater propensity for coordinating zinc(II) porphyrins than 1-methylimidazole 12 (Table 2). N-Heterocycles are known to bind to Mn(III) porphyrins forming five- and six-coordinate complexes (Figure 6A); $^{69-73,80-85}$ in case of Mn(III)-1, the heterocycle should displace the coordinated chloride anion (Figure 2A). The literature precedents would, in addition, suggest that the thermodynamic stability of Mn(III) complexes is (a) a function of the porphyrin's counterion (Figure 2A) and (b) typically

smaller than that of the corresponding zinc(II) porphyrins. An incremental addition of 1,5-diadamantylimidazole 14 to Mn(III)-1 led to distinct UV-vis spectroscopic changes, resembling the results of the titration of the Collman's picnic basket⁸⁴ (Figure 6C). Importantly, the appearance of several isosbestic points suggested that two colored species, e.g. the metalated basket and its 1:1 complexed form, contributed to the recorded spectra (Figure 6C); the result bodes well with the finding that large guest 14 prefers coordinating to one (the outer) side of Zn(II)–1. For other titrations involving Mn(III) porphyrins (Table 2), no isosbestic point(s) were observed,⁶⁹ suggesting the formation of both 1:1 (K_{a1} , Figure 6A) and 1:2 (K_{a2} , Figure 6A) complexes.⁵² In these experiments,⁵² rather small and insufficient UV-vis spectroscopic changes accompanied the complexation events (Figures S31/32 and S35/36, Supporting Information), thus complicating the binding analysis⁸² and contributing to a greater uncertainty of the stability constants K_{a1} and K_{a2} (Table 2).

Working Hypotheses about the Epoxidation of Alkenes with Gated Baskets. The interior of concave hosts could accommodate complementary guests and, in some cases even alter the course of chemical reactions.^{5,11,86,87} In particular, the confined environment of hosts can modulate the energy landscape of encapsulation reactions having an effect on the stability of reactive intermediates⁹ and/or transition states¹⁴ thereby affecting the rate, overall yield, product distribution and stereoselectivity.¹¹ One of the basic features of the encapsulation catalysis is so-called shape selectivity:⁸⁸ the catalyst promotes a faster conversion of substrates with size/ shape complementary to its inner space.^{89–91} For example, "picnic basket" (Figure 7A) was designed to comprise a

Figure 7. (A) Energy-minimized forms (MMFF, Spartan) of Collman's picnic basket⁶¹ and Nolte's porphyrin-capped clip.⁹² (B) Epoxidation of alkenes, with the assistance of terminal iodosylarene, had been envisioned to occur in the interior of 14_{out} -Mn(III)-1 and at the outer face of 12_{in} -Mn(III)-1.

Mn(III)-porphyrin "floor" and two isophthaloyl-based "side walls" forming a cavity whose size could be adjusted via synthesis.^{61,84,93} Remarkably,⁴⁴ this compound promoted shape-selective epoxidation of alkenes in its interior. The picnic basket and more recently developed porphyrin-capped clip^{82,94} (Figure 7A), however, each have a molecular framework requiring considerable synthetic effort for installing gates and thereby controlling the constrictive binding energy¹⁷ of guests.

The cavity of gated basket 1 is sizable (Figure 1B, ~570 Å 3) 37,95 so that numerous guests populating ~55% of its space may reside in the interior.³⁸ Along with this notion, we decided to investigate the catalytic epoxidation of alkenes with Mn(III)-1 having a heterocyclic ligand complexed at its outer $(14_{out}-Mn(III)-1)$ or inner $(12_{in}-Mn(III)-1)$ side (Figure 7B). On the basis of earlier mechanistic studies,⁴⁷⁻⁴⁹ we reasoned that our Mn(III) baskets (~570 A³) should give rise to a reactive Mn(V)=O species in the presence of iodosylarene (t-BuSO₂PhIO/236 Å³, Figure 7B). This low spin $(Mn(V) \text{ is } d^2 \text{ with } S = 0)$ intermediate should, in turn, be capable of transferring its oxygen atom to an alkene and form the corresponding epoxide.⁹⁵ In this way, basket 14_{out} -Mn(III)-1 would form the elusive oxo intermediate on the interior of the cavity, while in 12_{in} -Mn(III)-1, the oxygen transfer moiety would be outside of the cavity; importantly, the counter chloride anion is in these complexes noncoordinating.^{63,69-73} The oxygen transfer reaction should thus be possible to occur on either face of the metalated porphyrin (Figure 7B). Given a particular regio-, stereo-, and shape-selectivity of such epoxidations,^{44,96-99} one should be able to draw a conclusion about the transformation occurring in the interior of 14_{out}-Mn(III)-1 (Figure 7B). Note that the four aromatic gates are expected to restrict the rate by which alkenes reach the embedded catalytic center.

To test our working hypotheses, we studied the regio and stereoselectivity of the epoxidation of four differently sized olefins 18-21 (Figure 8A) using baskets $12_{in}-Mn(III)-1$ and $14_{out}-Mn(III)-1$ (Figure 7B), and model catalyst 17 (Figure 6).

Epoxidation of (*R***)-Limonene 18.** (*R*)-Limonene 18 contains one stereocenter and two double bonds (Figure 8A). While most oxidizing reagents predominantly epoxidize more substituted (internal) alkene functionality (pathway a, Figure 8B),¹⁰⁰ sterically hindered Mn(III)–porphyrins were shown to prefer functionalizing the external double bond (pathway b, Figure 8B).¹⁰¹ The sizable cavity of 14_{in} –Mn(III)–1 (~570 Å³) should easily accommodate 18 (176 Å³), though we were still curious about the regio-/diastereoselectivity of the epoxidation.

All reactions were completed in CH₂Cl₂ at 298 K, at which point ligands 12 and 14 were found to coordinate to the inner and outer sides, respectively, of Mn(III)-1 (Table 2). Small solvent molecules $(CH_2Cl_2, 61 \text{ Å}^3)$ were assumed to have negligible affinity for the interior of the basket and therefore be poorly competitive with (R)-limonene 18 as guests. The excessive amounts of alkene (6000 molar equiv) were used to suppress the rapid disproportionation of iodosylarene (Figure 7B).⁴⁵ The amount of imidazole-based ligands 12/14 (500-1000 molar equiv) was chosen to saturate Mn(III)-1 (0.05 mM, Table 2) under experimental conditions. The formation of μ -oxo dimers of Mn(III)-porphyrins has been known to contribute to their decomposition¹⁰² although the unique topology of our Mn(III)-1 basket improved the catalyst's stability as was also exemplified by Nolte's clip-shaped porphyrins (Figure 7A).⁹⁴ The epoxidation of (R)-limonene 18 (0.3 M) with Mn(III)-1 (0.05 mM) was thus repeated, with three consequent additions of iodosylarene (5.0 mM) to reveal a small drop (5-10%) in the overall yield of the epoxide.

The epoxidations of (R)-limonene 18 with 12_{in} -Mn(III)-1 and 14_{out} -Mn(III)-1 were found to have identical outcomes (Table 3). Accordingly, if the chemical transformation occurred inside 14_{out} -Mn(III)-1 then the reaction's energetics would

Figure 8. (A) Chemical structures of alkenes 18–21 having different size and shape (AM1). (B) Epoxidation of (R)-limonene 18 occurs at the (a) internal or (b) external double bond.

Table 3. Epoxidation of (R)-Limonene 18 (0.3 M) Completed in CH_2Cl_2 (298 K) with Iodosylarene (5.0 mM) and Porphyrin (0.05 mM) (Alkene/ArIO/Porphyrin = 6000:100:1)^{*a*}

porphyrin system	epoxidation regioselectivity ^d	internal diastereoselectivity ^e	external diastereoselectivity
12–17 ^b	4.81 ± 0.01	1.12 ± 0.01	1.27 ± 0.01
12–17 ^c	4.81 ± 0.03	1.12 ± 0.01	1.29 ± 0.02
$12_{in} - Mn(III) - 1^{b}$	3.94 ± 0.01	1.04 ± 0.01	1.47 ± 0.01
$14_{out} - Mn(III) - 1^{b}$	4.04 ± 0.01	1.11 ± 0.01	1.40 ± 0.01

^{*a*}The progress of the epoxidation was monitored with quantitative gas chromatography (GC) with error bars presenting standard deviation from two measurements. ^{*b*}500 molar equiv of the ligand. ^{*c*}1000 molar equiv of the ligand. ^{*d*}GC was used to determine the ratio of [internal epoxide]/[external epoxide]. ^{*e*}GC was used to determine the ratio of diastereomeric epoxides.

simply be indistinguishable from the one taking place at the outer face of 12_{in} -Mn(III)-1. At this point, we only deduced that the spacious cavity of the basket had no effect on the chemical behavior of this particular reactant and decided to consider the epoxidation of *more* sizable *cis*-stilbene 19 (214 Å³, Figure 8A). A somewhat different outcome of the epoxidation of 18 with "flat" porphyrin 17 (Table 3) can be accounted for by considering distinct electronic and steric characteristics of the two catalysts.⁸¹

Epoxidation of *cis***-Stilbene 19.** The catalytic epoxidation of *cis*-stilbene **19** with manganese(III) porphyrins gives rise to

cis- but also trans-2,3-diphenyloxirane (Figure 9).^{81,82,94} Typically, the reaction is, in the presence of various terminal oxidants, diastereoselective with predominant formation of the cis product and the retention of stereochemistry.¹⁰³⁻¹⁰⁵ In fact, the stepwise transfer of oxygen atom^{81,106} occurs at a faster rate and with a greater stereoselectivity in the presence of strong σ donating ligands (L, Figure 9).⁸² It has, accordingly, been proposed that the axial coordination has an effect on the position of the manganese atom with respect to the porphyrin ring: the stronger the coordination the closer the manganese atom to the porphyrin ring and the greater the stereo-selectivity.^{82,107} The epoxidations of *cis*-stilbene **19** (0.3 M) with 12_{in} -Mn(III)-1 and 14_{out} -Mn(III)-1 (0.05 mM) were completed in the presence of iodosylarene (5.0 mM) in CH_2Cl_2 at room temperature. The yields of the two reactions, with respect to the terminal oxidant, were comparable (\sim 50%) although the stereoselectivity was somewhat different (Table 4). The epoxidation occurring in the cavity of 14_{out} -Mn(III)-1 would, to a greater degree, favor the formation of the trans product (cis/trans = 6.6:1, Table 4). On the other hand, the reaction occurring at the outer face of 12_{in} -Mn(III)-1 gave less of the trans epoxide (cis/trans = 8.6: 1, Table 4). Importantly, model porphyrin systems 12/14-17 promoted the epoxidation of 19 with the stereoselectivity of cis/trans ~12.5:1 (Table 4) whereby ligands 12 and 14 had no measurable effect on the stereoisomeric product ratio!

Article

On the basis of the results of the epoxidation of compounds 18 (176 Å³) and 19 (214 Å³), it follows that the conversion of more sizable *cis*-stilbene 19 is indeed taking place in the interior of 14_{out} -Mn(III)-1. The cavity of the basket has a small, yet measurable, effect on the thermodynamic stability of the

Figure 9. Epoxidation of *cis*-stilbene with Mn(III) porphyrins is apparently a stepwise process.^{81,82,105}

Table 4. Epoxidation of *cis*-Stilbene 19 (0.3 M) Completed in CH_2Cl_2 (298 K) with Iodosylarene (5.0 mM) and Porphyrin (0.05 mM) (Alkene/ArIO/Porphyrin = 6000:100:1)^{*a*}

porphyrin system	<i>cis/trans</i> epoxide ^d	overall yield ^{d} (%)
12–17 ^b	11 ± 1	73
12–17 ^c	12.5 ± 0.2	71
$14-17^{b}$	12.3 ± 0.1	76
12_{in} -Mn(III)- 1^{b}	8.7 ± 0.1	49
12_{in} -Mn(III)- 1^{c}	8.6 ± 0.1	47
14_{out} -Mn(III)- 1^{b}	6.6 ± 0.3	49

^{*a*}The progress of the epoxidation was monitored with quantitative gas chromatography (GC) with error bars presenting the standard deviation from two measurements. ^{*b*}500 molar equiv of the ligand. ^{*c*}1000 molar equiv of the ligand. ^{*d*}Two GC measurements were completed to determine the reaction's stereoselectivity and overall yield.

reaction's transition states and intermediates (Figure 9), thereby leading to the formation of two diastereomeric products in the observed ratio (Table 4); somewhat smaller quantity of *cis*-stilbene produced inside the host is indeed intriguing, and perhaps due to the inner space stabilizing the transition state leading to the *trans* compound.

Competitive Epoxidation of *cis*-2-Octene 20 and *cis*-Cyclooctene 21. What would be the outcome of two concurrent epoxidations of alkenes having different shape/size inside the basket's cavity? Olefins 20 (*cis*-2-octene, 187 Å³, Figure 8A) and 21 (*cis*-cyclooctene, 142 Å³, Figure 8A) could both easily occupy the interior of gated 1 (570 Å³, Figure 10). To evaluate the ability of the basket for kinetically resolving 20 from 21, we completed the epoxidation of their equimolar mixture (0.15 M each) with 12_{in} -Mn(III)-1 and 14_{out} -Mn(III)-1 (0.05 mM) in CH₂Cl₂ at room temperature; note that the term "kinetic resolution" is more precisely used for describing two enantiomers reacting at different rates and giving rise to predominantly one product.¹⁰⁸

Notably, the epoxidation of equimolar 20/21 at the outer face of 12_{in} -Mn(III)-1 led to the formation of linear/cyclic epoxides in the ratio 1.2:1 (Table 5). When the same reaction

Table 5. Epoxidation of Equimolar 20/21 (0.15 M Each) Completed in CH₂Cl₂ (298 K) with Iodosylarene (5.0 mM) and Porphyrin System (0.05 mM)^{*a*}

porphyrin system	<i>cis/trans</i> epoxide ^c	20/21 product ratio ^c	overall yield ^c (%)
12–17 ^b	9.56 ± 0.01	1.27 ± 0.01	>90
14–17 ^b	9.31 ± 0.07	1.27 ± 0.01	>90
12_{in} -Mn(III)- 1^{b}	6.6 ± 0.3	1.2 ± 0.1	82
14 _{out} -Mn(III)-	6.4 ± 0.2	2.0 ± 0.1	68

"The progress of the epoxidation reactions was monitored with quantitative gas chromatography (GC) with error bars presenting the standard deviation from two measurements. ^b500 molar equiv of the ligand. ^cGC was used to determine the ratio of [cis]/[trans]-2-methyl-3-pentyloxirane obtained from *cis*-2-octene **20**. We used quantitative GC for obtaining the product ratio and overall reaction yield.

was promoted with model systems 12-17 and 14-17, we measured the comparable selectivity of 1.27:1 (Table 5).⁶¹

The epoxidation within the interior of 14_{out} -Mn(III)-1, however, gave greater quantities of the linear epoxide: the ratio of the linear to cyclic epoxide products was found to be 2.0:1 (Table 5).

The fact that the epoxidation of equimolar 20/21 had, in the presence of catalysts 12_{in} -Mn(III)-1 and 14_{out} -Mn(III)-1, a different outcome is in line with the notion that the reaction is indeed taking place in two distinct environments. That is to say, the epoxidation with 12_{in} -Mn(III)-1 occurs at its outer side while with 14_{out} -Mn(III)-1 in the basket's cavity. In addition, the epoxidation of linear alkene 20 appears somewhat faster (or cyclic 21 slower) in the interior of 14_{out} -Mn(III)-1 (Table 5); the observed effect is small but quantifiable from multiple measurements. What is the origin of the observed "shape selectivity"?

First, we examined the host–guest interaction of (R)limonene **18** and basket **1** using ¹H NMR spectroscopy.⁵² Upon an incremental addition of (R)-limonene (2.0-30.0 molar equiv) to the basket (0.67 mM) dissolved in CH₂Cl₂ (298.0 K), there was no observable change in the chemical shift of any proton resonance (Figure S37, Supporting Information).

Figure 10. Molecular sufaces of energy-minimized (MMFF) structures of 20 and 21 docked in the interior of gated basket 1 (left). In reaching the interior of 14_{out} -Mn(III)-1, olefins 20 and 21 pass the revolving gates at the rim of the basket (right).

One can, accordingly, estimate⁷⁶ that guest 18 (176 $Å^3$) has a rather negligible affinity (if any, $K_a < 10 \text{ M}^{-1}$) for occupying the sizable cavity of host 1 (570 $Å^3$). As shown earlier (Table 3), the epoxidation of (R)-limonene occurred in the interior of 14_{out} -Mn(III)-1 with regio- as well as diastereoselectivity identical to the reaction at the outer side of 12_{in} -Mn(III)-1. Altogether, the binding and the reactivity studies suggest that alkene 18 is likely adopting various isoenergetic orientations inside spacious 14_{out}-Mn(III)-1. Subsequently, we completed ¹H NMR titration of similarly sized *cis*-2-octene **20** (187 Å³) and cis-cyclooctene 21 (142 A³) to basket 1 (Figures S38/S39, Supporting Information), to reveal that these two alkenes have negligible affinity (if any, $K_a < 10 \text{ M}^{-1}$) for occupying the cavity of the basket (570 Å³). Given that the gated basket has no measurable propensity for complexing alkenes 20/21, could the observed kinetic resolution of such compounds emanate from the catalyst's topology and/or its dynamic nature (gating) in which linear guest 20 has a greater access to the embedded catalytic site in gated 14_{out} -Mn(III)-1 than the spherical 21 (Figure 10)?¹⁰⁹

Small energetic changes that characterize the competition reaction make any quantitative evaluation of the mechanism a challenging task. For instance, if one guest (**20** or **21**) has an affinity of $K_a = 5 \text{ M}^{-1}$ and another $K_a = 2 \text{ M}^{-1}$ toward $\mathbf{14}_{out} -$ Mn(III)-1, then $\Delta\Delta G^{\circ}$ would at 298 K be 0.54 kcal/mol; on the basis of the observed reaction's selectivity, however, one estimates that the rate difference for the oxidation of **20/21** amounts to $\Delta\Delta G^{\ddagger} \sim 0.3 \text{ kcal/mol}$ (Table 5). Evidently, additional studies are needed to examine the validity of the discussed mechanistic scenarios as well as evaluate the potential of a dynamic control of the outcome of a chemical reaction occurring in a gated environment.

CONCLUSIONS

Dynamic control of substrate access to a catalytic center, embedded in a synthetic molecular cavitand, could presumably have an effect on the outcome of chemical reaction taking place in such a confined space. We designed, prepared and investigated the catalytic behavior of a new family of gated baskets¹⁵ comprising a porphyrin "floor" fused to four phthalimide "side walls" and each carrying a revolving aromatic "gate". These rather spacious supramolecular catalysts (~570 ${
m \AA^3}$) were hereby shown to promote the epoxidation of alkenes (142-214 $Å^3$) in their interior. Despite the fact that the measured catalytic characteristics of the basket are still far from being useful for any particular synthetic application, the unique topology and dynamic nature of gated catalysts are certainly worth exploring for directing the outcome of chemical reactions. It is shown, therefore, that the results described in this study are important for learning about the relationship between the process of gating¹⁵ and chemical reactions occurring in confined environments.

EXPERIMENTAL SECTION

General Methods. All chemicals were purchased from commercial sources and used as received unless stated otherwise. All solvents were dried prior to use according to standard literature procedures. Chromatography purifications were performed using silica gel 60 (SiO₂, 40–75 μ m, 200 × 400 mesh). Thin-layer chromatography (TLC) was performed on silica gel plate w/UV254 (200 μ m). Chromatograms were visualized by UV light and stained using 20% phosphomolybdic acid in ethanol, if needed. ¹H and ¹³C NMR spectra were recorded, at 400 and 100 MHz respectively. They were

referenced using the solvent residual signal as an internal standard. The chemical shift values are expressed as δ values (ppm) and the couple constants values (J) are in Hertz (Hz). The following abbreviations were used for signal multiplicities: s, singlet; d, doublet; t, triplet; m, multiplet; and br, broad.

Compound 3. A solution of *m*-CPBA (4.4 g, 70%, 18.0 mmol) in dichloromethane (50.0 mL) was added to a solution of compound **2** (3.1 g, 12 mmol) in dichoromethane (50.0 mL) at 0 °C. The reaction mixture was stirred for 4 h at room temperature, quenched with aqueous Na₂S₂O₃ (1.0 M, 30.0 mL), and washed with H₂O (100.0 mL), aqueous Na₂CO₃, and brine. The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure to give a solid residue. The residue was purified with column chromatography (SiO₂, hexane/ethyl acetate = 4:1) to give compound **3** as a white solid (2.96 g, 90%). ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 7.55 (s, 2H), 3.88 (s, 6H), 3.49 (s, 2H), 3.39 (s, 2H), 1.99 (dd, *J* = 9.2, 1.2 Hz, 1H), 1.55 (d, *J* = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 168.1, 152.0, 130.2, 122.8, 55.6, 52.6, 44.6, 39.3. HRMS (ESI): *m/z* calcd for C₁₅H₁₄O₅Na 297.0739 [M + Na]⁺, found 297.0725.

Compound 4. Trimethylaluminum (1.0 M solution in heptane, 1.05 mL, 1.05 mmol) was added to a solution of PhSH (108.0 μ L, 1.05 mmol) in dichloromethane (1.5 mL) at 0 °C under nitrogen atmosphere. The reaction mixture was stirred for 20 min, and then the external temperature was lowered to -78 °C. After the temperature stabilized, compound 3 (274 mg, 1.0 mmol) in dichoromethane (1.5 mL) was added and the reaction mixture stirred for another 2 h. The dry ice/acetone bath was taken away, ans the external temperature slowly rose to 298 K. The solution was stirred for an additional 5 h before being quenched with HCl (1.0 M), extracted with dichloromethane $(3 \times 75 \text{ mL})$, and washed with brine (100 mL). The organic layer was dried with Na2SO4 and dichloromethane removed under reduced pressure. The solid residue was purified with column chromatography (SiO₂, hexane/ethyl acetate = 4:1) to give 4 (276.5 mg, 72%) as a mixture of two diastereomers $4a_{rac}$ and $4b_{rac}$ The intrinsic instability of this mixture prevented us from separating and/or fully characterizing the two diastereomers. We, however, acquired an ¹H NMR spectrum of the mixture. ¹H NMR (400 MHz, $CDCl_3$, 298 K): $\delta = 7.62 - 7.22$ (m, 14H), 4.04 - 4.01 (m, 2H), 3.93 -3.90 (m, 12H), 3.75 (d, J = 12.0 Hz, 1H), 3.49 (s, 2H), 3.42 (m, 2H), 3.37 (s, 1H), 3.19 (d, J = 8.0 Hz, 2H), 2.27 (d, J = 8.0 Hz, 2H), 2.00 (d, J = 8.0 Hz, 2H).

Compounds 5a_{rac} and 5b_{rac}. A solution of *m*-CPBA (3.68 g, 15.0 mmol) in dichloromethane (80.0 mL) was added to a solution of 4_{rac} (1.92 g, 5.0 mmol) in dichloromethane (80.0 mL) at 0 °C, and the reaction mixture was stirred for 4 h at room temperature. The reaction was quenched with aqueous Na2S2O3 (1.0 M, 50.0 mL), and the organic layer was washed with H₂O (100.0 mL), Na₂CO₃ (10%, 200.0 mL), and brine (200.0 mL). The organic solvent was dried over Na₂SO₄ and removed under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane/ethyl acetate = 2:1) to give $5a_{rac}$ (R_f = 0.25, 0.64 g) and $5b_{rac}$ (R_f = 0.2, 1.4 g) each as a white solid in overall 99% yield. Compound $5b_{rac}$. ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 7.97 (d, J = 8.0 Hz, 2H), 7.69 (m, 1H), 7.59 (m, 3H), 7.37 (s, 1H), 4.28 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.77 (s, 1H), 3.68 (d, J = 5.2 Hz, 1H), 3.48 (s, 1H), 3.19 (d, J = 6.4 Hz, 1H), 2.75 (d, J = 10.4 Hz, 1H), 2.02 (d, J = 10.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 167.9, 167.7, 149.8, 147.9, 139.7, 134.0, 131.2, 131.0, 129.3, 128.4, 123.2, 121.3, 73.8, 67.8, 52.65, 52.64, 51.6, 45.7, 45.2. HRMS (ESI): *m*/*z* calcd for C₂₁H₂₀O₇SNa: 439.0827 [M + Na]⁺, found 439.0822. Compound $5a_{rac}$. ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 7.85–7.83 (m, 2H), 7.66–7.52 (m, 3H), 7.46 (s, 2H), 3.83 (s, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.77 (s, 1H), 3.42 (t, J = 1.6 Hz, 1H), 3.25 (s, 1H), 2.98 (dd, J = 6.8, 8.8 Hz, 1H), 2.59 (m, 1H), 1.61 (dd, J = 8.8, 12.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta = 167.6 (2C), 146.4, 145.5, 137.9, 134.3, 131.3, 130.9, 129.6, 128.1,$ 123.1, 121.7, 83.2, 66.4, 52.59, 52.57, 49.7, 49.6, 26.8. HRMS (ESI): m/z calcd for C₂₁H₂₀O₇SNa 439.0827 [M + Na]⁺, found 439.0812.

Compounds 6a/6b. Triethylamine (544 μ L, 4.0 mmol), camphanic acid chloride (868 mg, 4.0 mmol), and DMAP (50 mg) were added to a solution of 5 (832 mg, 2.0 mmol) in dry

dichloromethane (44.0 mL) at 0 °C. After the solution was stirred for 2 h at room temperature, a saturated aqueous solution of citric acid was added. The organic layer was washed with NaHCO₃ and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue purified by flash column chromatography (SiO₂, hexane/ ethyl acetate = 2:1) to give diastereomeric 6a and 6b, each as a white solid (overall 1.15 g, 96%; approximate 1:1 ratio of 6a/6b). Note that 6a and 6b were assigned arbitrarily, and we do not have experimental evidence for distinguishing the two molecules. Each compound was, however, successfully used for completing the synthesis of gated basket 1. Compound 6a. ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 8.00 (d, J = 3.2 Hz, 2H), 7.74-7.61 (m, 4H), 7.20 (s, 1H), 5.51 (dd, J = 6.8, 0.8 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.52 (d, J = 12.8 Hz, 2H), 3.32 (dd, J = 6.8, 1.6, Hz, 1H), 2.86 (d, J = 10.0 Hz, 1H), 2.56 (m, 1H),2.18 (m, 1H), 2.04 (d, J = 10.0 Hz, 1H), 1.93 (m, 1H), 1.70 (m, 1H), 1.16 (s, 3H), 1.12 (s, 3H), 1.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 178.3, 167.9, 167.4, 166.5, 149.5, 146.3, 139.7, 134.1, 131.8, 131.0, 129.6, 128.4, 123.8, 121.2, 90.9, 74.3, 66.5, 54.7, 54.3, 52.70, 52.68, 49.7, 46.4, 45.7, 30.7, 28.8, 16.61, 16.58, 9.63. HRMS (ESI): m/z calcd for $C_{31}H_{32}O_{10}SNa$ 619.1614 [M + Na]⁺, found 619.1605. Compound **6b**. ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 7.98 (d, J = 3.2 Hz, 2H), 7.74-7.62 (m, 4H), 7.18 (s, 1H), 5.57 (d, J = 7.0 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.48 (d, J = 5.5 Hz, 2H), 3.29 (d, J = 7.0 Hz, 1H), 2.92 (d, J = 8.0 Hz, 1H), 2.87-2.78 (m, 1H),2.17-2.07 (m, 2H), 2.01-1.93 (m, 1H), 1-76-1.67 (m, 1H), 1.18 (s, 3H), 1.12 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta = 177.8, 167.9, 167.3, 166.3, 149.2, 146.1, 139.8, 134.2, 132.0, 131.1,$ 129.6, 128.2, 123.9, 121.2, 91.2, 74.3, 66.2, 54.9, 54.3, 52.74, 52.73, 49.9, 46.4, 45.6, 30.7, 29.1, 17.4, 17.0, 9.7. HRMS (ESI): m/z calcd for $C_{31}H_{32}O_{10}SNa$ 619.1614 [M + Na]⁺, found 619.1605.

Compounds 7 and 5b. To a solution of 6a (1.1 g, 1.8 mmol) in dry CH₃OH (50.0 mL) was added a catalytic amount of NaOCH₃/ CH₂OH (38.5 mM, 13.0 mL) at 0 °C. The solution was stirred for 5 h at room temperature, the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography $(SiO_2, hexane/ethyl acetate = 2:1)$ to give 7 $(R_f = 0.3, 82.5 \text{ mg}, 10\%)$ and 5b ($R_f = 0.25$, 640.0 mg, 85%) each as a white solid. Compound **5b.** ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.97 (d, J = 8.0 Hz, 2H), 7.69 (m, 1H), 7.59 (m, 3H), 7.37 (s, 1H), 4.28 (t, J = 6.0 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.77 (s, 1H), 3.68 (d, J = 5.2 Hz, 1H), 3.48 (s, 1H), 3.19 (d, J = 6.4 Hz, 1H), 2.75 (d, J = 10.4 Hz, 1H), 2.02 (d, J = 10.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 167.9, 167.7, 149.8, 147.9, 139.7, 134.0, 131.2, 131.0, 129.3, 128.4, 123.2, 121.3, 73.8, 67.8, 52.65, 52.64, 51.6, 45.7, 45.2. HRMS (ESI): m/z calcd for C₂₁H₂₀O₇SNa 439.0827 [M + Na]⁺, found 439.0822. Compound 7. ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 7.90 (m, 2H), 7.68-7.54 (m, 5H), 3.92 (s, 3H), 3.91 (s, 3H), 3.81 (s, 1H), 3.67 (m, 2H), 3.54 (s, 1H), 3.28 (s, 3H), 2.18 (d, J = 5.2 Hz, 1H), 2.05 (d, J = 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 168.3, 168.0, 146.8, 146.4, 139.5, 133.7, 131.5, 130.4, 129.2, 128.2, 124.8, 122.4, 83.1, 72.7, 57.9, 52.7, 52.6, 49.0, 48.3, 45.3. MS (ESI): m/z calcd for $C_{22}H_{22}O_7SNa 453.09 [M + Na]^+$, found 453.1.

Compound 8. To a stirred solution of **5b** (324.5 mg, 0.78 mmol) in anhydrous pyridine (4.0 mL) at 0 °C were added MsCl (179.4 mg, 1.56 mmol) and a catalytic amount of DMAP. The reaction mixture was stirred for 12 h and then quenched with H₂O (20.0 mL). Following, the organic layer was extracted with dichloromethane (50.0 mL), washed with brine (50.0 mL), and dried over Na2SO4. The organic solvent was removed under reduced pressure and the solid residue purified by column chromatography (SiO2, hexane/ethyl acetate = 2:1) to give mesylate (see the structure above) as a white solid (308.6 mg, 80%). ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 8.00 (m, 2H), 7.77–7.60 (m, 4H), 7.29 (s, 1H), 5.05 (d, J = 7.2 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.79 (s, 1H), 3.64 (s, 1H), 3.42 (dd, J = 7.2, 1.6 Hz, 1H), 3.16 (s, 3H), 2.75 (d, J = 10.4 Hz, 1H), 2.09 (d, J = 10.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 167.8, 167.4, 149.6, 145.7, 139.5, 134.3, 132.0, 131.2, 129.6, 128.6, 124.1, 121.3, 78.8, 66.8, 52.76, 52.74, 50.9, 46.1, 45.3, 38.4. HRMS (ESI): m/z calcd for $C_{22}H_{22}O_9S_2Na$ 517.0603 $[M + Na]^+$, found 517.0618. 1,8-Diazabicycloundec-7-ene (DBU, 253.0 µL, 1.69 mmol) was slowly added to a solution of mesylate (418.9 mg, 0.847 mmol) in dichloromethane (5.0 mL) at 0 °C, and the reaction mixture was subsequently stirred for 30 min at room temperature. The solvent was removed under reduced pressure and the residue purified by column chromatography (SiO₂, hexane/ethyl acetate = 2:1) to give compound 8 as a white solid (303.7 mg, 90%). ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 7.79–7.43 (m, 7H), 6.92 (s, 1H), 4.19 (s, 1H), 4.06 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 2.61 (d, *J* = 8.0 Hz, 1H), 2.35 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 168.0, 167.7, 156.5, 152.5, 151.1, 150.8, 138.3, 133.7, 129.8, 129.44, 129.36, 128.1, 122.5, 122.1, 69.1, 52.7, 52.5, 51.2, 50.6. HRMS (ESI): *m/z* calcd for C₂₁H₁₈O₆SNa 421.0722 [M + Na]⁺, found 421.0707.

Compound 9. Under an atmosphere of nitrogen, *tert*-butyl isocyanoacetate (184.0 µL, 1.266 mmol) was added to 1.0 M solution of t-BuOK in THF (1.266 mL) at 0 °C. Then, 0.1 M solution of compound 8 (420.0 mg, 1.055 mmol) in dry THF (11.0 mL) was added and the reaction mixture stirred for 4 h at ambient temperature. The reaction was quenched with dilute HCl (5%, 4.5 mL) and the extracted with dichloromethane (25.0 mL). The organic layer was washed with saturated NaHCO₃ (25.0 mL) and brine (25.0 mL) and dried over Na2SO4. The solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO₂, hexane/ethyl acetate = 2:1) to give compound 9 as a white solid (365.5 mg, 87%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 8.03 (br, 1H), 7.544 (s, 1H), 7.539 (s, 1H), 6.55 (d, J = 2.5 Hz, 1H), 4.50 (s, 1H), 4.27 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 2.68 (s, 2H), 1.58 (s, 9H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 168.5, 168.3, 160.3, 155.2, 154.5, 140.7, 136.0, 129.4, 129.2, 121.7, 121.4, 116.6, 113.3, 80.7, 68.4, 52.5, 52.4, 46.4, 45.6, 28.4. HRMS (ESI): m/z calcd for $C_{22}H_{23}O_6NNa$ 420.1423 [M + Na]⁺, found 420.1406.

Compound 10. Solid iodine (5.4 mg, 0.04 mmol) was added to a solution of 9 (57 mg, 0.143 mmol) in acetonitrile (3.0 mL). Water $(30.0 \ \mu L)$ was added and the reaction mixture refluxed for 5 h. The mixture was then diluted with aqueous Na2S2O3 (5.0 mL) and extracted with ethyl acetate (10.0 mL) and the organic layer dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue purified by column chromatography (SiO₂, hexane/ ethyl acetate = 1:4) to give carboxylic acid product (see the chemical structure above) as a white solid (35.0 mg, 70%). ¹H NMR (500 MHz, $CDCl_{3}$, 298 K): δ = 8.41 (br, 1H), 7.63 (s, 1H), 7.54 (s, 1H), 6.65 (d, J = 2.5 Hz, 1H), 4.61 (s, 1H), 4.29 (s, 1H), 3.856 (s, 3H), 3.854 (s, 3H), 2.71 (s, 2H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 168.4, 168.3, 165.4, 155.1, 154.2, 144.0, 137.1, 129.5, 129.4, 122.2, 121.5, 115.2, 114.4, 68.7, 52.52, 52.50, 46.4, 45.6. HRMS (ESI): *m*/*z* calcd for $C_{18}H_{15}O_6NNa$ 364.0797 [M + Na]⁺, found 364.0782. To a stirred suspension of the carboxylic acid compound (75.0 mg, 0.22 mmol) and benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBop) (126 mg, 0.242 mmol) in THF (1.2 mL), N,N-Diisopropylethylamine (DIPEA) (46 µL, 0.264 mmol) was added at room temperature. The reaction mixture was allowed to stir for 2 h, the solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO₂, hexane/ethyl acetate = 2:1) to give the desired ester (see the chemical structure above) as a white solid (80.0 mg, 80%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 8.90 (br, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.65 (s, 1H), 7.58 (s, 1H), 7.56-7.39 (m, 3H), 6.84 (d, J = 2.5 Hz, 1H), 4.70 (s, 1H), 4.36 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 2.71 (q, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 168.3, 168.2, 156.4, 154.8, 153.5, 147.0, 143.5, 138.3, 129.9, 129.6, 129.0, 128.8, 124.9, 122.4, 121.8, 120.4, 118.5, 109.2, 108.6, 69.1, 52.64, 52.63, 47.1, 45.7. HRMS (ESI): m/z calcd for C₂₄H₁₈O₆N₄Na 481.1124 [M + Na]⁺, found 481.1123. NaBH₄ (5.7 mg, 0.15 mmol) was in small portions added to a stirred solution of the Bop ester (46.0 mg, 0.1 mmol) in THF (1 mL) at 0 $^\circ\text{C}.$ The reaction mixture was stirred for 2 h at room temperature and the progress of the reduction was followed with TLC (SiO₂; $R_f = 0.2$; hexane/ethyl acetate = 2:1). The reaction mixture was quenched with water (5 mL) and extracted with dichloromethane $(3 \times 5 \text{ mL})$ and the solvent was removed to give compound 10. Note that pyrromethanecarbinol 10 is unstable, which prevented us from completing its full characterization. ¹H NMR (250 MHz, CDCl₃, 298 K): δ = 7.52 (s, 1H), 7.50 (s, 1H), 7.42 (br, 1H), 6.43 (d, J = 2.3 Hz, 1H), 4.59 (s, 1H), 4.57 (s, 1H), 4.25 (s, 2H), 3.857 (s, 3H), 3.852 (s, 3H), 2.62 (q, J = 7.75 Hz, 2H).

Compound 11. Pyrromethanecarbinol **10** (19.6 mg, 0.06 mmol) was dissolved in 12 mL of CHCl₃, and *p*-TsOH (0.81 mg, 0.00474 mmol) was added to such a mixture at room temperature. After 6 min, DDQ (27.0 mg, 0.12 mmol) was added, and the reaction mixture was stirred for additional 1 h. Upon the addition of triethylamine (12.0 μ L), the reaction mixture was filtered through a pad of alumina and washed with dichloromethane until the eluent was colorless. The solvent was removed under reduced pressure to give crude **11** as a brown solid (5.5 mg, 30%). After an additional purification with preparatory TLC (SiO₂, dichloromethane/methanol = 20:1), we obtained octaester **11**. ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 10.22 (s, 4H), 8.05(s, 8H), 5.81 (s, 8H), 3.77–3.76 (m, 28H), 3.64 (d, *J* = 7.6 Hz, 4H), -4.83 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, 27 °C): δ = 168.2, 155.8, 129.4, 122.6, 101.2, 75.7, 52.4, 49.1. HRMS ESI *m/z* calcd for C₇₂H₅₃N₄O₁₆Na 1253.3433 [M + Na]⁺, found 1253.3425.

Gated Basket 1. An aqueous solution of LiOH (17 mg of LiOH in 0.7 mL of H₂O) was transferred to 11 (12.3 mg, 0.01 mmol) dissolved in THF (0.8 mL), and the reaction mixture was stirred at 80 °C for 3 h. The aqueous phase was acidified with 5% aqueous HCl solution, and the resulting precipitate was filtered, washed with water (2×0.5) mL), and dried at 60 °C under high vacuum to give octaacid product (10.1 mg, 90%). ¹H NMR (500 MHz, MeOD, 298 K): $\delta = 11.74$ (s, 4H), 8.11 (s, 8H), 6.23 (s, 8H), 3.97 (d, J = 8.0 Hz, 4H), 3.77 (d, J = 8.0 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 169.5, 162.0, 154.3, 130.6, 123.1, 76.4, 49.2. A solution of octaacid (17.0 mg, 0.0152 mmol) in acetic anhydride (1.0 mL) was heated at 130 °C for 2 h. The solvent was removed under high vacuum to give pure tetraanhydride (the chemical structure is shown above) as a brown powder (15.6 mg, 98%). ¹H NMR (400 MHz, DMSO, 298 K): δ = 10.68 (s, 4H), 8.24 (s, 8H), 6.14 (s, 8H), 3.89 (d, I = 7.6 Hz, 4H), 3.62 (d, I = 7.6 Hz, 4H), -5.03 (s, 2H). We observed that the tetraanhydride compound would undergo a fast hydrolysis in DMSO, which limited a complete characterization of this compound. Tetraanhydride (15.6 mg, 0.015 mmol) was added to benzylamine (8.0 mg, 0.075 mmol) dissolved in dry DMSO (1.0 mL) and the solution was stirred at room temperature for 2 h. Following, neat pyridine (0.1 mL) was added and the temperature raised to 125 °C. The reaction was allowed to complete (48 h) after which the solvent was evaporated in vacuum and the residue purified by column chromatography (SiO₂, dichloromethane/ methanol = 20:1) to yield brown solid 1 (10.5 mg, 50%). ¹H NMR (400 MHz, CD_2Cl_2 , 298 K): $\delta = 10.23$ (s, 4H), 7.98 (s, 8H), 7.12-7.04 (m, 20H), 5.87 (s, 8H), 4.52 (s, 8H), 3.88 (d, J = 8.0 Hz, 4H), 3.69 (d, J = 8.0 Hz, 4H), -4.97 (s, 2H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 168.0, 159.8, 142.2, 138.8, 136.8, 128.3, 127.9, 127.3, 117.1, 78.2, 49.3, 41.1. HRMS MALDI-TOF: m/z calcd for $C_{92}H_{58}N_8O_8$ 1403.4456 [M + H]⁺, found 1403.4467.

Compound Zn(II)–1. To a solution of basket 1 (2.5 mg, 0.00178 mmol) in CHCl₃ (1.5 mL) was added Zn(OAc)₂·2H₂O (7.8 mg, 0.036 mmol) in CH₃OH (0.3 mL), upon which the reaction mixture was stirred for 24 h at room temperature. The solvent was removed under reduced pressure and then the residue purified by TLC preparative chromatography (SiO₂, dichloromethane/methanol = 15:1) to yield Zn(II)–1 as a brown solid (1.56 mg, 60%). ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 10.28 (s, 4H), 8.05 (broad, 8H), 7.23–7.01 (m, 20H), 5.88 (s, 8H), 4.62 (broad, 8H), 3.87 (d, *J* = 4.0 Hz, 4H). MS MALDI-TOF: *m/z* calcd for C₉₂H₅₆N₈O₈Zn 1464.351 [M]⁺, found 1464.169. This coordination compound was unstable (MALDI-MS) and fragmented into 1 (see the Supporting Information). The UV–vis spectrum of Zn(II)–1 is shown in Figure 6B.

Compound Mn(III)–1. To a solution of basket 1 (1.5 mg, 0.001 mmol) in CHCl₃ (1.0 mL) was added MnCl₂ (5.0 mg, 0.04 mmol) in CH₃OH (0.7 mL), and the reaction mixture was stirred for 36 h at room temperature. The solvent was then removed under reduced pressure and the residue purified by TLC preparative chromatography (SiO₂, dichloromethane/methanol = 10:1) to yield Mn(III)–1 as a brown solid (1.2 mg, 80%). HRMS ESI: m/z calcd for C₉₂H₅₇N₈O₈Mn

1456.3680 $[M + H]^+$, found 1456.3628. The UV-vis spectrum of Mn(III)-1 is shown in Figure 6C.

1,5-Diadamantylimidazole 14. Adamantylamine (825.0 mg, 5.46 mmol) and adamantylaldehyde (700.0 mg, 4.27 mmol) were dissolved in benzene (7.0 mL) and refluxed for 4 h with a Dean Stark distilling trap for removing H₂O and forming the Schiff base. Next, benzene was removed under reduced pressure followed by the addition of methanol (7.0 mL) and tosylmethyl isocyanide (819.0 mg, 4.2 mmol). The solution was stirred for 20 h and then heated to reflux for 3 h. The methanol was removed under reduced pressure and the residue extracted with dichloromethane $(3 \times 50 \text{ mL})$ and brine (50 mL). The organic layer was diluted with hexane to precipitate p-toluenesulfonic acid, which was removed by filtration. The dichloromethane solution was concentrated, and the crude product was boiled with an excess of K₂CO₃ in 10 mL of methanol for 5 h. The organic solvent was removed under reduced pressure, and the crude product was purified by column chromatography (SiO₂, dichloromethane/methanol = 15:1) to give 14 as a white solid (366.9 mg, 20%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.80 (s, 1H), 7.02 (s, 1H), 2.35 (d, J = 2.5 Hz, 6H), 2.29 (s, 3H), 2.16 (d, J = 2.5 Hz, 6H), 2.12 (s, 3H), 1.78 (m, 12H); ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 143.8, 136.3, 125.6, 70.6, 61.2, 43.9, 43.4, 36.4, 35.6, 30.1, 28.7 ppm; HRMS (ESI): m/z calcd for C₂₃H₃₂N₂ 337.2644 [M + H]⁺, found 337.2633.

ASSOCIATED CONTENT

Supporting Information

Detailed description of ¹H NMR and UV–vis spectroscopic titration experiments and the epoxidation procedures. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: 614 247 8342. Fax: 614 292 1685. E-mail: badjic@ chemistry.ohio-state.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported with funds obtained from the National Science Foundation under CHE-1012146 by the Department of the Defense, Defense Threat Reduction Agency (HDTRA1-11-1-0042). The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. We thank the Ohio Supercomputer Center for generous computational resources.

REFERENCES

- (1) Cram, D. J. Science (Washington, DC, U.S.) 1983, 219, 1177.
- (2) MacGillivray, L. R.; Atwood, J. L. Angew. Chem., Int. Ed. 1999, 38, 1018.
- (3) Jasat, A.; Sherman, J. C. Chem. Rev. (Washington, DC, U.S.) 1999, 99, 931.
- (4) Brotin, T.; Dutasta, J.-P. Chem. Rev. (Washington, DC, U.S.) 2009, 109, 88.
- (5) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J. Jr. Angew. Chem., Int. Ed. 2002, 41, 1488.
- (6) Yeh, R. M.; Davis, A. V.; Raymond, K. N. Compr. Coord. Chem. II 2004, 7, 327.
- (7) Badjic, J. D.; Stojanovic, S.; Ruan, Y. Adv. Phys. Org. Chem. 2011, 45, 1.
- (8) Sherman, J. C.; Cram, D. J. J. Am. Chem. Soc. 1989, 111, 4527.
- (9) Warmuth, R.; Makowiec, S. J. Am. Chem. Soc. 2007, 129, 1233.
- (10) Warmuth, R. Eur. J. Org. Chem. 2001, 423.

- (11) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418.
- (12) Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114.
- (13) Hu, S.; Li, J.; Xiang, J.; Pan, J.; Luo, S.; Cheng, J.-P. J. Am. Chem. Soc. 2010, 132, 7216.
- (14) Bao, X.; Rieth, S.; Stojanovic, S.; Hadad, C. M.; Badjic, J. D. Angew. Chem., Int. Ed. 2010, 49, 4816.
- (15) Rieth, S.; Hermann, K.; Wang, B.-Y.; Badjic, J. D. Chem. Soc. Rev. 2011, 40, 1609.
- (16) Houk, K. N.; Nakamura, K.; Sheu, C.; Keating, A. E. Science (Washington, DC, U.S.) **1996**, 273, 627.
- (17) Quan, M. L. C.; Cram, D. J. J. Am. Chem. Soc. 1991, 113, 2754.
- (18) Zhou, H.-X.; Wlodek, S. T.; McCammon, J. A. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 9280.
- (19) Zhou, H.-X.; McCammon, J. A. Trends Biochem. Sci. 2010, 35, 179.
- (20) Menger, F. M. Acc. Chem. Res. 1985, 18, 128.
- (21) Menger, F. M. Pure Appl. Chem. 2005, 77, 1873.
- (22) Wang, B.-Y.; Bao, X.; Yan, Z.; Maslak, V.; Hadad, C. M.; Badjic,
- J. D. J. Am. Chem. Soc. 2008, 130, 15127. (23) Rieth, S.; Bao, X.; Wang, B.-Y.; Hadad, C. M.; Badjic, J. D. J. Am.
- (23) Kleth, S.; Bao, A.; Wang, B.-1.; Hadad, C. M.; Badjić, J. D. J. Am. Chem. Soc. **2010**, 132, 773.
- (24) Rieth, S.; Badjic, J. D. Chem.—Eur. J. 2011, 17, 2562.
- (25) Wang, B.-Y.; Rieth, S.; Badjic, J. D. J. Am. Chem. Soc. 2009, 131, 7250.
- (26) Maslak, V.; Yan, Z.; Xia, S.; Gallucci, J.; Hadad, C. M.; Badjic, J. D. J. Am. Chem. Soc. **2006**, 128, 5887.
- (27) Wang, X.; Houk, K. N. Org. Lett. 1999, 1, 591.
- (28) Raymo, F. M.; Houk, K. N.; Stoddart, J. F. J. Am. Chem. Soc. 1998, 120, 9318.
- (29) Sheu, C.; Houk, K. N. J. Am. Chem. Soc. 1996, 118, 8056.
- (30) Palmer, L. C.; Rebek, J. Jr. Org. Biomol. Chem. 2004, 2, 3051.
- (31) Hooley, R. J.; Van Anda, H. J.; Rebek, J. Jr. J. Am. Chem. Soc. 2006, 128, 3894.
- (32) Helgeson, R. C.; Hayden, A. E.; Houk, K. N. J. Org. Chem. 2010, 75, 570.
- (33) Wang, J.; Feringa, B. L. Science (Washington, DC, U.S.) 2011, 331, 1429.
- (34) Davis, A. V.; Yeh, R. M.; Raymond, K. N. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4793.
- (35) Wu, B.; Parquette, J. R.; RajanBabu, T. V. Science (Washington, DC, U.S.) 2009, 326, 1662.
- (36) Liu, S.; Gan, H.; Hermann, A. T.; Rick, S. W.; Gibb, B. C. Nat. Chem. 2010, 2, 847.
- (37) Ramondenc, Y.; Schwenninger, R.; Phan, T.; Gruber, K.; Kratky, C.; Kraeulter, B. *Angew. Chem.* **1994**, *106*, 939.
- (38) Mecozzi, S.; Rebek, J. Jr. Chem.-Eur. J. 1998, 4, 1016.
- (39) Wang, B.-Y.; Turner, D. A.; Zujovic, T.; Hadad, C. M.; Badjic, J. D. Chem.—Eur. J. **2011**, *17*, 8870.
- (40) McLain, J. L.; Lee, J.; Groves, J. T. Biomimetic Oxid. Catal. Transition Met. Complexes 2000, 91.
- (41) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. (Washington, DC, U.S.) 2004, 104, 3947.
- (42) Meunier, B.; Robert, A.; Pratviel, G.; Bernadou, J. Porphyrin Handbook 2000, 4, 119.
- (43) Feiters, M. C.; Rowan, A. E.; Nolte, R. J. M. Chem. Soc. Rev. 2000, 29, 375.
- (44) Collman, J. P.; Zhang, X.; Lee, V. J.; Uffelman, E. S.; Brauman, J. I. Science (Washington, DC, U.S.) **1993**, 261, 1404.
- (45) Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. J. Am. Chem. Soc. **1999**, 121, 7164.
- (46) Meprathu, B. V.; Protasiewicz, J. D. *Tetrahedron* **2010**, *66*, 5768. (47) Song, W. J.; Seo, M. S.; DeBeer George, S.; Ohta, T.; Song, R.;
- Kang, M.-J.; Tosha, T.; Kitagawa, T.; Solomon, E. I.; Nam, W. J. Am. Chem. Soc. 2007, 129, 1268.
- (48) Zhang, R.; Horner, J. H.; Newcomb, M. J. Am. Chem. Soc. 2005, 127, 6573.

- (49) Groves, J. T.; Lee, J.; Marla, S. S. J. Am. Chem. Soc. 1997, 119, 6269.
- (50) Rieth, S.; Yan, Z.; Xia, S.; Gardlik, M.; Chow, A.; Fraenkel, G.; Hadad, C. M.; Badjic, J. D. J. Org. Chem. 2008, 73, 5100.
- (51) Panigot, M. J.; Waters, J. F.; Varde, U.; Sutter, J. K.; Sukenik, C. N. *Macromolecules* **1992**, *25*, 530.
- (52) See the Supporting Information.
- (53) Liu, C.; Hashimoto, Y.; Kudo, K.; Saigo, K. Bull. Chem. Soc. Jpn. 1996, 69, 2095.
- (54) Moreno-Vargas Antonio, J.; Schutz, C.; Scopelliti, R.; Vogel, P. J. Org. Chem. 2003, 68, 5632.
- (55) Shelnutt, J. A.; Song, X.-Z.; Ma, J.-G.; Jia, S.-L.; Jentzen, W.; Medforth, C. J. Chem. Soc. Rev. **1998**, 27, 31.
- (56) Haddad, R. E.; Gazeau, S.; Pecaut, J.; Marchon, J.-C.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. **2003**, 125, 1253.
- (57) Ito, S.; Murashima, T.; Ono, N.; Uno, H. Chem. Commun. (Cambridge) **1999**, 2275.
- (58) Barkigia, K. M.; Berber, M. D.; Fajer, J.; Medforth, C. J.; Renner, M. W.; Smith, K. M. J. Am. Chem. Soc. **1990**, 112, 8851.
- (59) Somma, M. S.; Medforth, C. J.; Nelson, N. Y.; Olmstead, M. M.;
- Khoury, R. G.; Smith, K. M. Chem. Commun. (Cambridge) **1999**, 1221. (60) Lu, H.; Zhang, X. P. Chem. Soc. Rev. **2011**, 40, 1899.
- (61) Collman, J. P.; Zhang, X.; Hembre, R. T.; Brauman, J. I. J. Am. Chem. Soc. 1990, 112, 5356.
- (62) Collman, J. P.; Kodadek, T.; Raybuck, S. A.; Meunier, B. Proc. Natl. Acad. Sci. U.S.A. **1983**, 80, 7039.
- (63) Ogoshi, H.; Mizutani, T.; Hayashi, T.; Kuroda, Y. Porphyrin Handbook 2000, 6, 279.
- (64) Middel, O.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 2001, 66, 3998.
- (65) Ahlrichs, R.; Baer, M.; Haeser, M.; Horn, H.; Koelmel, C. Chem. Phys. Lett. **1989**, 162, 165.
- (66) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119.
- (67) Haeser, M.; Ahlrichs, R. J. Comput. Chem. 1989, 10, 104.
- (68) Von Arnim, M.; Ahlrichs, R. J. Comput. Chem. 1998, 19, 1746.
- (69) La Mar, G. N.; Walker, F. A. J. Am. Chem. Soc. 1975, 97, 5103.
- (70) de Sousa, A. N.; de Carvalho, M. E. M. D.; Idemori, Y. M. J. Mol. Catal. A Chem. **2001**, 169, 1.
- (71) Kirner, J. F.; Reed, C. A.; Scheidt, W. R. J. Am. Chem. Soc. 1977, 99, 2557.
- (72) Kirner, J. F.; Reed, C. H.; Scheidt, W. R. J Am Chem Soc 1977, 99, 2557.
- (73) Kirner, J. F.; Scheidt, W. R. Inorg. Chem. 1975, 14, 2081.
- (74) Ballester, P.; Costa, A.; Castilla, A. M.; Deya, P. M.; Frontera, A.; Gomila, R. M.; Hunter, C. A. *Chem.—Eur. J.* **2005**, *11*, 2196.
- (75) Ballester, P.; Costa, A.; Deya, P. M.; Frontera, A.; Gomila, R. M.; Oliva, A. I.; Sanders, J. K. M.; Hunter, C. A. *J. Org. Chem.* **2005**, *70*, 6616.
- (76) Hirose, K. Anal. Methods Supramol. Chem. 2007, 17.
- (77) Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305.
- (78) Ercolani, G.; Schiaffino, L. Angew. Chem., Int. Ed. 2011, 50, 1762.
- (79) Ercolani, G. J. Am. Chem. Soc. 2003, 125, 16097.
- (80) Yuan, L. C.; Bruice, T. C. J. Am. Chem. Soc. 1986, 108, 1643.
- (81) Park, S.-E.; Song, W. J.; Ryu, Y. O.; Lim, M. H.; Song, R.; Kim, K. M.; Nam, W. J. Inorg. Biochem. **2005**, *99*, 424.
- (82) Elemans, J. A. A. W.; Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R. J. M. *Eur. J. Org. Chem.* **2007**, 751.
- (83) Crestoni, M. E.; Fornarini, S.; Lanucara, F. Chem.—Eur. J. 2009, 15, 7863.
- (84) Collman, J. P.; Brauman, J. I.; Fitzgerald, J. P.; Hampton, P. D.; Naruta, Y.; Michida, T. Bull. Chem. Soc. Jpn. 1988, 61, 47.
- (85) Harmer, H. R.; Reimer, K. J.; Smith, D. W.; James, B. R. Inorg. Chim. Acta 1989, 166, 167.
- (86) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 349.
- (87) Breiner, B.; Clegg, J. K.; Nitschke, J. R. Chem. Sci. 2011, 2, 51.

(88) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2009, 42, 1650.

(89) Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000.

- (90) Yoshizawa, M.; Tamura, M.; Fujita, M. Science (Washington, DC, U.S.) 2006, 312, 1472.
- (91) Sundaresan, A. K.; Ramamurthy, V. Org. Lett. 2007, 9, 3575.(92) Thordarson, P.; Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R. J.

M. Nature (London, U.K.) 2003, 424, 915. (93) Collman, J. P.; Zhang, Z.; Lee, V.; Hembre, R. T.; Brauman, J. I.

Adv. Chem. Ser. 1992, 230, 153.

(94) Elemans, J. A. A. W.; Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R. J. M. Chem. Commun. (Cambridge) **2000**, 2443.

(95) Collman, J. P.; Zeng, L.; Wang, H. J. H.; Lei, A.; Brauman, J. I. *Eur. J. Org. Chem.* **2006**, 2707.

(96) Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Mol. Catal. A Chem. 1996, 113, 109.

(97) Hull, J. F.; Sauer, E. L. O.; Incarvito, C. D.; Faller, J. W.; Brudvig, G. W.; Crabtree, R. H. *Inorg. Chem. (Washington, DC, U.S.)* **2009**, 48, 488.

(98) Lai, T.-S.; Lee, S. K. S.; Yeung, L.-L.; Liu, H.-Y.; Williams, I. D.; Chang, C. K. Chem. Commun. (Cambridge, U.K.) 2003, 620.

(99) Suslick, K. S. Porphyrin Handbook 2000, 4, 41.

(100) Groves, J. T.; Nemo, T. E. J. Am. Chem. Soc. 1983, 105, 5786.

(101) Suslick, K. S.; Cook, B. R. J. Chem. Soc., Chem. Commun. 1987, 200.

(102) Schardt, B. C.; Smegal, J. A.; Hollander, F. J.; Hill, C. L. J. Am. Chem. Soc. **1982**, 104, 3964.

(103) Meunier, B.; Guilmet, E.; De Carvalho, M. E.; Poilblanc, R. J. Am. Chem. Soc. **1984**, 106, 6668.

(104) Battioni, P.; Renaud, J. P.; Bartoli, J. F.; Reina-Artiles, M.; Fort, M.; Mansuy, D. J. Am. Chem. Soc. **1988**, 110, 8462.

(105) Collman, J. P.; Brauman, J. I.; Hampton, P. D.; Tanaka, H.; Bohle, D. S.; Hembre, R. T. J. Am. Chem. Soc. **1990**, *112*, 7980.

(106) Collman, J. P.; Brauman, J. I.; Meunier, B.; Raybuck, S. A.; Kodadek, T. Proc. Natl. Acad. Sci. U.S.A. **1984**, 81, 3245.

(107) Van der Made, A. W.; Nolte, R. J. M. J. Mol. Catal. 1984, 26, 333.

(108) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.

(109) Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Am. Chem. Soc. **1996**, 118, 5708.

Article